Впереди создание киберрастений и биомашин?

 

 

За миллионы лет эволюции растения и цианобактерии научились захватывать фотоны солнечного света и использовать их энергию для сборки молекул питательных веществ. С одной стороны, этот процесс очень эффективен с точки зрения химии, а с другой — растения используют лишь 1—2% от общей энергии излучения Солнца. Учитывая нарастающий продовольственный кризис и нужду в «зеленых» источниках топлива, ученые в последние годы неоднократно пытались «улучшить» КПД растений.

Майкл Страно (Michael Strano) из Массачусетского технологического института (США) и его коллеги в статье, опубликованной в Nature Materials, заявляют о безграничных возможностях, которые открывает интеграция электроники и наноматериалов в живые растения. Растения имеют много ценных качеств, например, они дают нам пищу и топливо, вырабатывают кислород, а также просто добавляют эстетики окружающей среде, в которой мы живем. Ученые хотят сделать растения еще более полезными с помощью добавления наноматериалов, которые существенно увеличивают производительность растений и придают им совершенно новые функции, например, возможность вести мониторинг загрязнения окружающей среды.

Чтобы продемонстрировать перспективность своей идеи, ученые провели серию экспериментов с широко распространенным растением семейства капустных: резуховидкой Таля (Arabidopsis thaliana).

Исследователи внедрили в хлоропласты (органеллы в которых происходит фотосинтез) углеродные нанотрубки, которые повысили способность растений к захвату световой энергии на 30%. Также, с помощью другого типа нанотрубок удалось «научить» растение обнаруживать один из основных загрязнителей воздуха — оксид азота.

Изначально идея бионических растений выросла из проекта по созданию самовосстанавливающихся солнечных панелей, похожих на растительные клетки. В ходе исследований, ученые попытались усилить функции фотосинтеза хлоропластов, выделенных из растений, чтобы использовать их в солнечных ячейках.

Хлоропласты — это природные машины, которые имеют все необходимое для фотосинтеза. На первом этапе фотосинтеза пигмент хлорофилл поглощает свет, который возбуждает электроны. В свою очередь, электроны проходят через тилакоидные мембраны хлоропластов. Растение использует эту электрическую энергию для обеспечения второго этапа фотосинтеза — производства сахара.

При удалении из растения, хлоропласты сохраняют свою работоспособность на протяжении нескольких часов, после чего они разрушаются из-за повреждения белков светом и кислородом. Чтобы продлить функционирование хлоропластов в пробирке, ученые ввели в них наночастицы оксида церия. Эти частицы являются очень сильными антиоксидантами, которые поглощают активные формы кислорода и других веществ, повреждающих хлоропласты. Наночастицы были помещены в хлоропласты с помощью новой технологии LEEP. Суть данной технологии заключается в упаковке наночастиц в напряженные молекулы полиакриловой кислоты, которая легко проникает через гидрофобную мембрану хлоропластов. Благодаря введению наночастиц оксида церия, количество вредных молекул, разрушающих хлоропласты, резко сократилось.

Используя LEEP, исследователи также встроили в хлоропласты полупроводниковые углеродные нанотрубки, которые резко повысили эффективность использования солнечного света. Обычно хлоропласты утилизируют лишь 10% солнечного света, но благодаря повышенной электропроводимости углеродных нанотрубок, хлоропласты смогли захватить свет на длинах волн, которые ранее им были недоступны, например ультрафиолетовый, зеленый и ближний инфракрасный части спектра.

После опытов в пробирке, ученые обратились к живым растениям. Ученые насытили хлоропласты растения наночастицами и нанотрубками так, что это увеличило поток электронов в процессе фотосинтеза на 30%.

Пока ученые еще не обнаружили увеличения количества сахара и других полезных химических веществ в бионических растениях. Тем не менее, добавление углеродных нанотрубок позволило превратить растения в детекторы оксида азота: особое полимерное покрытие нанотрубок взаимодействует с загрязнителем и дает слабую флуоресценцию. Ранее ученые уже разработали на основе нанотрубок различные датчики, реагирующие на опасные загрязнители, такие как перекись водорода, тринитротолуол и нервнопаралитический газ зарин. Таким образом, бионические растения могут стать надежным детектором опасных веществ, а «лишние» электроны можно использовать для питания микроэлектроники.

То есть, по сути, главный смысл этой работы не столько в том, что у растений можно повысить эффективность фотосинтеза, сколько в самой возможности появления биосинтетических растений с заданными функциями. Наночастицы помогают нам создать нечто вроде биомашины, ну а уж что эта биомашина будет делать, активно поглощать углекислый газ или сообщать нам о появлении каких-то вредных веществ в атмосфере — зависит от пожеланий заказчика.

В настоящее время ученые работают над созданием бионических растений, которые можно использовать для мониторинга окружающей среды, в том числе для обнаружения пестицидов, грибных и бактериальных инфекций. Также ученые пытаются интегрировать в растения другие наноматериалы, такие как графен.

 

Источники: rnd.cnews.ru, ria.ru, compulenta.computerra.ru

 

На заставке фото с сайта innovanews.ru