Для сверхчастых взмахов крыльями насекомые используют в сокращениях мышц тот же молекулярный механизм, что и позвоночные, но расширяя его возможности

Летающие насекомые машут крыльями с чудовищной частотой: например, у комара она может достигать 500 взмахов в секунду. И довольно долго ученые пытались выяснить, как насекомым это удается. Можно было бы предположить, что они машут крыльями как-то иначе, чем мы, то есть позвоночные, двигаем крыльями, лапами, ногами и руками. А у насекомых работает какой-то свой механизм. Но нет. Молекулярные исследования, проведенные в Японском научно-исследовательском институте синхротронного излучения (Japan Synchrotron Radiation Research Institute — or SPring-8), результаты которого опубликованы в журнале Science, привели к неожиданному результату: оказалось, никакого особенного «насекомого» механизма для махания крыльями нет, механика тут та же, что и в наших с вами мышцах.

Любое мышечное сокращение начинается с того, что на мышечную клетку приходит нервный импульс, который открывает в мембране мышечной клетки каналы для ионов кальция. Кальций связывается с белком тропонином, который находится в связке с нитевидным полимерным белком актином. Ионы заставляют тропонин изменить свое положение на актине так, что с ним теперь может взаимодействовать другой белок — миозин. Длинная молекула миозина начинает изгибаться и как бы идти по нити актина; это смещение актиновых и миозиновых нитей относительно друг друга и приводит к сокращению мышцы.

Но если речь идет о сверхчастых сокращениях, как в случае крыльев насекомых, такой механизм не работает: кальциевые насосы просто не успевали бы включать и выключать потоки ионов в ответ на нейронный импульс. И у насекомых никаких сверхчастых потоков кальциевых ионов действительно нет. После того как к мышце приходит импульс, она начинает осциллировать, то есть в ответ на один импульс производится множество сокращений. Это можно сравнить с тем, как маятник какое-то время качается по инерции от одного-единственного толчка. При этом сокращения мышц поддерживаются сами собой: чем сильнее мышца-антагонист сократится и тем самым растянет мышцу напарника, тем сильнее потом сократится вторая мышца. То есть растяжение здесь стимулирует последующее сокращение.

Этот феномен известен давно, и свойствен он тем мышцам, от которых требуются ритмичные сокращения, — например, сердцу. Но и у сердца в ритмичных сокращениях задействованы кальциевые каналы. У насекомых же они во время работы крыльев молчат. Такую особенность пытались объяснить тем, что растяжение мышцы дает больше возможностей миозину связаться с актином. Но это одновременно предполагало и то, что тропонину не нужна кальциевая стимуляция, чтобы освободить от себя актин, а отсюда, в свою очередь, вытекало, что сократительные белки насекомых принципиально отличаются от белков позвоночных.

Хироюки Ивамото (Hiroyuki Iwamoto) и Наото Яги (Naoto Yagi) проанализировали структурные изменения в мышечных белках насекомых, происходившие во время полета. Объектом исследования послужил шмель, которого просвечивали рентгеновскими лучами, пока он махал крыльями, и все это снимали на камеру с частотой 5000 кадров в секунду. Ученые убедились, что у насекомых (у шмелей по крайней мере) нет никаких принципиальных модификаций молекулярного механизма мышц. Первичный нейронный импульс запускает серию сокращений, которые поддерживаются вышеописанной «активацией на растяжение»: чем сильнее растягивается мышца, тем сильнее она потом сократится.

Единственная особенность была в том, что растяжение провоцировало структурные деформации в миозине, из-за которых он прочнее связывался с актином, что и повышало силу сокращения. В остальном же все было так, как обычно: и зависимое от кальция поведение тропонина, и скольжение миозина и актина друг относительно друга. Иными словами, насекомые просто реализовали скрытые возможности того же самого молекулярного механизма, с помощью которого, например, птицы машут крыльями.

Надо сказать, что попытки сделать рентгеноструктурный «портрет» летящего насекомого предпринимались неоднократно, однако получить полную информацию о работе крыльев мешало несовершенство техники. И надо было дождаться наших дней, когда появились камеры, способные делать 40 кадров на один взмах шмелиного крыла, чтобы понять, как все-таки насекомые летают.

Обнаруженный механизм не требует никаких специфичных для насекомых белков или изменений в известных белках. Так, ранее другая группа исследователей обнаружила, что у насекомых в клетках присутствуют две формы тропонина, которых нет у позвоночных. Ученые выдвигали гипотезу о том, что именно эти формы тропонина помогают насекомым активировать мышцы при растягивании. Какова роль этих форм в свете новых данных, пока не ясно.

Схема строения мышечного волокна: в момент сокращения головки на нитях миозина (толстые красные нити с лопастями на поверхности) соединяются нитями актина (тонкие серые линии). Переступая этими головками, нить миозина протягивает мимо себя нить актина (рисунок Shutterstock.)

После связывания кальция тропонин убирает тропомиозин с актина и миозин получает возможность с ним связаться (изображение: Hank van Helvete)

 

Источники: Philip Ball Flight of the bumblebee decoded —www.nature.com / compulenta.computerra.ru, lenta.ru, www.vesti.ru

 

На заставке фото с сайта macroid.ru