АГРОХИМИЧЕСКИЕ СВОЙСТВА ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВ ЧЕПЕЦКО-КИЛЬМЕЗСКОГО ВОДОРАЗДЕЛА В УСЛОВИЯХ АНТРОПОГЕННОГО ВОЗДЕЙСТВИЯ

И.Я. Копысов, А.В. Тюлькин, А.В. Семенов, Вятская государственная сельскохозяйственная академия

В современных условиях земледелия России плодородие хорошо окультуренных дерново-подзолистых почв деградирует, что связано с их подкислением, дегумификацией, ухудшением качества гумуса, уменьшением содержания азота, фосфора, калия [1, 2]. Появившиеся в последнее время наряду с традиционными новые виды антропогенного воздействия могут в значительной степени углубить и расширить деградацию почвенного покрова.

Цель исследований, проведенных в 2003—2006 гг., — выявление влияния антропогенной нагрузки на агрохимические свойства дерново-подзолистых почв Чепецко-Кильмезского водораздела Кировской обл., установление наличия и степени проявления деградационных процессов. Стационарные участки находятся на Чепецко-Кильмезском водоразделе в Фаленском р-не: 2 — на территории Фаленской ГСС в лесу и на пашне и 2 — в рядовом хозяйстве на среднесмытой (эрозионно-опасный склон с уклоном более 3°) и несмытой дерново-подзолистой почве. Исследуемый участок пашни ГСС является частью зернотравяного севооборота с насыщением зерновыми и зернобобовыми культурами 60%, многолетних трав, чистого и занятого пара (по 20%). За ротацию севооборота органические удобрения вносили только в паровое поле по 40 т/га. Известь вносили под зернобобовые и многолетние травы по полной гидролитической кислотности. Под яровые зерновые вносили $N_{60}P_{60}K_{60}$. В подкормку под озимую рожь вносили N_{30} . В настоящее время удобрения на ГСС вносятся только при посеве. Дозы вносимых органических и минеральных удобрений в рядовом хозяйстве до 1990 г. были ниже на 30—40% по сравнению с ГСС, а с 1990 г. в расчете на 1 га посевов приходилось лишь 14 кг д.в. минеральных удобрений.

Агрохимический анализ образцов проводили по следующим методикам определения: pH — потенциометрически; содержание подвижного фосфора и обменного калия — по Кирсанову; органическое вещество — по Тюрину; Са, Mg — трилонометрическим методом; гидролитическая кислотность — по Каппену; сумма поглощенных оснований — по Каппену-Гильковицу; обменный алюминий — по Соколову.

Для любого типа почв существуют определенные границы оптимальных параметров, выход за которые грозит началом деградационных процессов.

В качестве основных изучаемых параметров были выбраны содержание гумуса, элементов питания (P_2O_5 , K_2O), актуальная (pH) и гидролитическая (H) кислотности.

Оценку наличия и степени проявления деградационных процессов химических свойств исследуемых почв проводили согласно общепринятым методикам [5].

Оценивая показатели агрохимических свойств, можно констатировать факт, что они являются характерными для дерново-подзолистых суглинистых почв на бескарбонатных покровных суглинках (табл.). Для всех дерново-подзолистых суглинистых почв свойственны кислая реакция, низкая степень насыщенности гумусом, невысокое содержание подвижного фосфора. Наиболее чувствительными и быстрее подвергающимися изменению при использовании земель являются химические свойства верхних горизонтов почвенного профиля.

Агрохимические свойства дерново- подзолистых почв Фаленского р-на					
Горизонт (глубина, см)	Гумус, %		гы питания, 00 г почвы К20	pHKCI	Нг, в мг-экв на 100 г почвы
1	2	3	4	5	6
Участок № 20. Пашня (ГСС)					
Апах (0—24)	2,05	230,3	112,3	4,7	3,96
A2 (27—30)	0,95	55,8	88,5	3,9	6,81
A2B1 (33—43)	0,64	72,2	106,3	3,7	8,65
B1 (43—50)	0,54	77,5	96,0	3,7	8,11
B2 (62—70)	0,46	130,7	91,7	3,7	6,69
B2C (125—140)	0,66	331,2	91,2	4,2	3,48
C (150—160)	0,62	387,1	87,4	4,2	3,13
Участок № 21. Лес.					
A1A2 (6—13)	1,86	62,8	55,8	3,8	10,3
A2 (13—25)	1,29	82,9	58,4	3,9	6,81
A2B1 (25—34)	0,95	111,7	58,5	3,8	6,53
B1 (53—45)	0,78	106,2	93,3	3,8	8,11
B2 (60—70)	0,56	154,6	118,9	3,9	6,11
B2C (110—135)	0,80	27,3	69,8	4,0	4,52
C (135—145)	0,58	89,9	66,8	3,9	4,32
Участок № 22. Пашня рядового хозяйства (колхоз им. Ленина)					
Апах (0—22)	1,68	41,3	72,1	4,4	4,23
A2B1 (22—32)	0,66	42,3	78,6	3,8	7,59
B1 (45—55)	0,60	63,2	103,2	3,7	7,76
B2 (60—70)	0,56	114,0	102,5	3,8	6,69
B2C (105—115)	0,46	181,7	96,7	4,0	4,32
C 115-130	0,56	48,6	80,6	4,1	4,32
Участок № 23. Пашня — смытая почва (колхоз им. Ленина)					
Апах (0—23)	1,55	142,0	138,3	4,9	2,92
B1 (30—40)	0,58	85,9	118,2	4,0	5,25
B2 (60—70)	0,44	120,8	101,1	3,9	5,48
B2C (105—115)	0,28	194,9	98,6	4,0	4,42
C (115—125)	0,41	192,8	102,7	4,1	4,14

Дерново-подзолистые суглинистые почвы исследуемых участков имеют низкое содержание гумуса (2,05—1,68%). В смытой почве содержание гумуса составило 1,55%. Столь низкое содержание гумуса является характерным для дерново-подзолистых почв данного региона [7]. Для повышения и поддержания баланса гумуса на высоком уровне необходимо одновременно со вспашкой вносить органические и минеральные удобрения, проводить известкование и травосеяние [4].

Показатели рН и гидролитической кислотности свидетельствуют о кислой реакции исследуемых почв во всех генетических горизонтах. По данным Тюлина и Гущиной [8], рН для данного типа почв составляет 4,4—5,6 в среднем по региону, а гидролитическая кислотность — 3,1—6,3 мг-экв/100 г почвы. Исключение составляет лесная почва, где на величину кислотности накладывает свой отпечаток разложение хвойного опада, имеющего кислую реакцию [6]. В целом же по профилям наблюдается возрастание кислотности. И в этом случае накладывает свой отпечаток промывной тип водного питания, свойственный для подзоны южной тайги.

Содержание подвижных элементов питания (P_2O_5 и K_2O) находится на уровне 41,3—230,3 мг/1000 г почвы (P_2O_5) и 112,3—138,3 мг/1000 г почвы (K_2O). Исключение составляют лесная почва, где не происходит пополнение баланса питательных веществ за счет минеральных удобрений, и эродированная почва, где происходит припашка иллювиального горизонта (B), богатого фосфором.

Для нас дальнейшей задачей было установление наличия и степени проявления деградационных процессов по основным агрохимическим параметрам. В качестве контроля взяты данные агрохимических свойств почв участка №20, как наиболее приближенных к оптимальным параметрам.

Необходимо отметить, что из изучаемых почв две являются деградированными — дерново-подзолистая среднесуглинистая и дерново-подзолистая среднесмытая среднесуглинистая на покровных бескарбонатных суглинках рядового хозяйства (участки № 22 и № 23). Пониженное содержание гумуса в последней обусловлено разрушающим действием водной эрозии, проявляющимся в смыве части пахотного слоя и вовлечении в распашку обедненного органическим веществом иллювиального горизонта. Снижение содержания гумуса в дерново-подзолистой среднесуглинистой почве рядового хозяйства, по нашему мнению, связано с низким уровнем культуры земледелия.

Из представленных почв к деградированной по содержанию подвижного фосфора относится дерново-подзолистая среднесуглинистая почва на покровном бескарбонатном суглинке (участок №22) и целинная лесная дерново-подзолистая среднесуглинистая почва (участок №21). Очень низкое содержание подвижного фосфора в первой обусловлено малыми дозами вносимых удобрений, а во второй, главным образом, естественным процессом почвообразования и малым количеством данного элемента в растительном опаде. Повышенное содержание Р₂О₅ в

эродированной почве (участок №23) связано, главным образом, с эрозионными процессами, вызывающими припашку нижележащего элювиально-иллювиального горизонта, богатого этим элементом. В отношении обменного калия наблюдается аналогичная тенденция.

Следовательно, у среднесмытых дерново-подзолистых почв нецелесообразно использовать в качестве диагностического показателя деградации содержание подвижных соединений фосфора (P_2O_5) и обменного калия (K_2O), поскольку указанные показатели в этих почвах более высокие за счет припахивания и распашки иллювиального горизонта. К таким же выводам в своих исследованиях пришел Ковриго [3].

Реакция почвенного раствора является отражением состава почвообразующих пород, характера и интенсивности процессов и режимов, происходящих в конкретных условиях сочетания факторов почвообразования. Поэтому даже на ограниченной территории встречаются почвы с различными величинами этого показателя, в нашем случае, преимущественно в кислом интервале. Необходимо отметить, что под влиянием водной эрозии в пахотных горизонтах почв на покровных бескарбонатных суглинках наблюдается увеличение значений рН_{ксі} и уменьшение значений гидролитической кислотности. Поэтому для дерново-подзолистых пахотных почв на покровных бескарбонатных суглинках характерна химическая деградация.

Таким образом, стационарные исследования, проведенные на наиболее распространенных дерново-подзолистых почвах Чепецко-Кильмезского водораздела Кировской обл., выявили особенности изменения свойств и режимов почв под влиянием антропогенного фактора. Сельскохозяйственное использование дерново-подзолистых почв на покровных суглинках нарушает естественный ход процессов почвообразования и приводит к доминированию процессов антропогенного характера, не свойственных природным почвам. Земледельческое использование дерново-подзолистых почв на покровных бескарбонатных суглинках сопровождается изменением их химических свойств. Применение органических и минеральных удобрений способствует увеличению содержания и запасов гумуса и основных элементов питания в пахотных аналогах. У среднесмытых дерново-подзолистых почв нецелесообразно использовать в качестве диагностического показателя деградации содержание подвижных соединений фосфора и обменного калия, поскольку указанные показатели в этих почвах более высокие за счет припаханности и распашки иллювиального горизонта.

Агрохимические свойства дерново-подзолистых почв Чепецко-Кильмезского водораздела в условиях антропогенного воздействия

Agrochemical of properties derno-podzolic of soils Chepecko-Kilmezskogo of a wa-tershed as a result of anthropogenic effect

Авторы

I.Y.Kopysov, A.V. Tyulkin, A.V. Semynov.

Литература

- 1. Ефимов В.Н., Иванов А.И. Деградация хорошо окультуренных дерново-подзолистых почв // Доклады Рос. Академии с.- х. наук. 2001. №6. С. 21-24.
- 2. Зайдельман Ф.Р. Гидрологический фактор антропогенной деградации почв и меры ее предупреждения // Почвоведение. 2000. № 10. С. 1272–1284.
- 3. Ковриго В.П. Почвы Удмуртской Республики. Ижевск: РИО Ижевская ГСХА, 2004. 490 с.
- 4. Левин Ф. И. Окультуривание подзолистых почв. М.: Колос, 1972. 264 с.
- 5. Региональная программа мониторинга сельскохозяйственных земель Киров-ской области / Копысов И.Я., Кузнецов Н.К., Прокашев А.М., Охорзин Н.Д., Зубарев А.И., Дегтярева Т.Л. Киров: Вятский госпедуниверситет, 1996. 131 с.
- 6. Роде А.А. Почвоведение. Госбумиздат, 1955. 413 с.
- 7. Тюлин В.В. Почвы Кировской области. Киров: Волго-Вят. кн. изд-во, Киров. отд-ние, 1976. 288 с.
- 8. Тюлин В.В., Гущина А.М. Особенности почв Кировской области и их ис-пользование при интенсивном земледелии. Киров, 1991. 92 с.