РЕАКЦИЯ ГЕКСАПЛОИДНОГО ТРИТИКАЛЕ НА ЭКЗОГЕННУЮ ГИББЕРЕЛЛОВУЮ КИСЛОТУ

К.У. Куркиев, Дагестанская опытная станция Всероссийского НИИ растениеводства им. Н.И. Вавилова

Для тестирования высоты растения у зерновых культур возможно использование в фазе проростков реакции на экзогенные ростовые вещества, например, гибберелловую кислоту (ГК). Исследования, проведенные на пшенице, показали, что высокорослые образцы в большей степени реагируют на ГК по сравнению с низкорослыми [1, 2]. Это обстоятельство дает возможность идентифицировать отдельные фено- и генотипы. В связи с этим представляет интерес возможность использования реакции на экзогенную ГК при тестировании сортообразцов гексаплоидного тритикале, несущих в своем генотипе различные гены короткостебельности.

Работу проводили на Дагестанской опытной станции ВИР на сортообразцах гексаплоидного тритикале из мировой коллекции ВИР с геномным составом AABBRR, у которых при изучении генетического контроля низкорослости было показано отличие от тестера высокорослости по одному гену [3]. Всего в исследование было вовлечено 13 сортообразцов гексаплоидного тритикале: среднерослые яровые — Stier «S» (к-1253, Мексика), Yago (к-2044, Польша), CinCno × Beagle (к-2257, Мексика), СЛЗМР6 (к-1623, Украина); среднерослые озимые — ПРАГ 160 (к-2528, Дагестан, ДОС ВИР), Снегиревский зернокормовой (к-1293, Московская обл.), Тарасовский 1 (к-789, Ростовская обл.), Тальва 100 (к-1508, Воронежская обл.); низкорослые озимые — ПРАГ 184 (к-2546, Дагестан, ДОС ВИР), ПРАГ 199 (к-2558, Дагестан, ДОС ВИР), ПРАД (Устимовский 2) (к-589, Украина), АД 3189 (к-1299, Московская обл.), Bokolo (к-2076, Венгрия). У всех среднерослых сортообразцов низкорослость обусловлена действием рецессивных генов. У низкорослых тритикале Bokolo имеется ген с промежуточным наследованием, у остальных - с полудоминантным.

По результатам изучения аллельных взаимоотношений у данных тритикале выделено 6 групп сортообразцов, различающихся друг от друга по генам, контролирующим короткостебельность: І — ПРАГ 160, Тальва 100. Тарасовский 1; ІІ — Снегиревский зернокормовой; ІІІ — СЛЗМР6; ІV — CinCno × Beagle, Yago, Stier «S»; V — ПРАГ 199, ПРАГ 184, АД 3189, ПРАД (Устимовский 2); VI — Bokolo [4].

Для тестирования высоты растения в фазе проростков использовали реакцию на ГК. Воздушно-сухие семена обрабатывали раствором ГК (240 мг/л) и водой в течение 48 ч при 20°С (контроль). Обработанные семена высевались в поддоны с землей, в которых растения выращивали до появления второго листа. Влияние обработки ГК определяли при сравнении длины первого листа у опытных и контрольных растений. Для сравнения в опыт включили высокорослый сорт тритикале ПРАГ 3, не имеющий в своем генотипе генов короткостебельности.

Установлена различная степень реакции сортообразцов тритикале по длине первого листа на ГК (табл.). Среднерослые сортообразцы ПРАГ 160, Тальва 100. Тарасовский 1 показали достаточно высокую отзывчивость на воздействие ГК (прирост составляет 28,6—37,6%). Почти так же отреагировал на действие ГК Снегиревский зернокормовой (24,1%). У ярового тритикале СЛЗМР6 показан слабый (7,6%), достоверно неотличимый от контроля прирост длины первого листа.

Остальные среднерослые образцы ярового тритикале CinCno × Beagle, Yago и Stier оказались отзывчивыми на

действие ГК. Короткостебельные сортообразцы ПРАГ 199, ПРАГ 184, АД 3189, ПРАД (Устимовский 2) в той или иной степени показали наличие реакции на ГК. Полудоминантный ген короткостебельности, имеющийся у этих тритикале, внесен в генотип предположительно от ржи. Низкорослый сорт Bokolo вообще не реагировал на ГК.

Действие экзогенной гибберелловой кислоты на длину первого листа у сортообразцов гексаплоидного тритикале

гексаплоидного тритикале					
Сортообразец	Вариант	Длина первого листа, см	Ошибка средней	t-крит*	Прирост, %
ПРАГ 3	Контроль	13,6	0,91	_	_
	Опыт	18,9	0,72	5,30	39,0
Снегиревский зернокормовой	Контроль	17,1	0,79	_	_
	Опыт	21,3	0,64	4,07	24,1
Тальва 100	Контроль	13,6	1,26	_	-
	Опыт	18,3	1,45	2,45	34,4
Тарасовский 1	Контроль	9,4	0,93	_	_
	Опыт	15,0	1,01	3,60	37,6
ПРАГ 160	Контроль	15,4	0,87	_	_
	Опыт	19,8	1,02	4,40	28,6
СЛЗМР6	Контроль	16,9	0,82	_	_
	Опыт	18,2	0,73	1,18	7,6
CinCno × Beagle	Контроль	17,3	0,74	_	_
	Опыт	20,3	0,78	2,79	17,3
Yago	Контроль	15,1	0,68	_	_
	Опыт	19,5	0,70	4,51	29,2
Stier	Контроль	8,2	0,81	_	_
	Опыт	10,8	0,95	2,60	31,7
ПРАД (Усти- мовский 2)	Контроль	15,3	1,31	_	_
	Опыт	19,7	1,35	2,30	28,3
АД 3189	Контроль	13,4	0,92	_	_
	Опыт	21,2	0,85	3,80	27,9
ПРАГ 184	Контроль	11,1	0,75	_	_
	Опыт	13,7	0,64	2,60	23,4
ПРАГ 199	Контроль	14,3	0,78	_	_
	Опыт	18,2	0,62	3,90	27,3
Bokolo	Контроль	12,5	0,86	_	_
	Опыт	12,1	0,65	0,44	-3,8

 $t_{rooper} = 2,00$

Известно, что гены Rht1-Rht2, Rht3, Rht10 не реагируют на ГК, а Rht4, Rht5-Rht9, Rht12, Rht15, Rht13, Rht14, Rht16-Rht20 — реагируют [2, 5, 6]. Реакция на ГК наследуется как качественный признак (чувствительность рецессивна).

Согласно литературным данным, от пшеницы в генотип тритикале были переданы рецессивные аллели генов rht1, rht2 (сорт Norin 10), rht6 (сорт Brevor), rht8, rth9 (сорт Akakomugi, Безостая 1) и полудоминантный Rht3 (сорт Tom Pouce) [7—11]. Источниками низкорослости для тритикале от ржи служили сорта Snoopy, UC-90, Петкус короткостебельный, Kustro, Карлик московский, EM-1 и его производные. Последние являются носителями доминантной аллели гена HI, остальные источниками рецессивных генов низкорослости [7, 12—14].

Учитывая, что короткостебельность у СЛЗМР6 имеет рецессивную природу, а **Bokolo имеет ген с промежу**точным наследованием, можно предположить наличие у образца СЛЗМР6 rht1 или rht2, а у Bokolo — Rht3 генов

короткостебельности. Ген Rht1 локализован в хромосоме 4A, а ген Rht2, в хромосоме 4D [15]. Поскольку тритикале СЛЗМР6 имеет генотип AABBRR (без R/D замещений) можно сказать о наличии в генотипе данного образца рецессивного гена короткостебельности (rht1).

Таким образом, применение метода тестирования экзогенной гибберелловой кислотой (ГК) позволило определить происхождение некоторых генов короткостебельности. Идентифицированы следующие гены (оба от пшеницы): рецессивный — rht1 (у образца СЛЗМР6), с промежуточным наследованием — Rht3 (Bokolo). Полудоминантный ген короткостебельности HI, привнесенный в генотип тритикале от ржи, не реагирует на действие ГК.

PEAKUNS ГЕКСАПЛОИДНОГО ТРИТИКАЛЕ НА ЭКЗОГЕННУЮ ГИББЕРЕЛЛОВУЮ КИСЛОТУ REACTION OF HEXAPLOID TRITICALE SAMPLES TO HIBBERRELIC ACID

Авторы

К.У. Куркиев

K.U. Kurkiev

Литература

- 1. Мережко А. Ф., Писарева Л. А., Прилюк Л. В. Генетический кон-троль высоты растения у пшеницы // Генетика, 1986. Т. XXII. № 5. С. 725-732.
- 2. Allan R. E., Vogel O. A. Craddock J. C. Comparative response to gibbereiic acid of dwarf, semidwarfand standard short and tall winter wheat varie-ties //Agron. J. 1959. V. 51. № 12. P. 737-740.
- 3. Куркиев К.У., Куркиев У.К., Альдеров А.А. Генетический кон-троль короткостебельности гексаплоидных тритикале (Triticosecale Wittm.). Генетика. 2006. Т. 42. № 3. С. 369-376.
- 4. Куркиев К.У., Альдеров А.А. Аллельные взаимоотношения генов короткостебельности у гексаплоидных тритикале. Вестник РАСХН. 2007. № 10.
- 5. Borner A., Lenmann C.O., Mettin D. Preliminary results of a screen-ing for GA3 response in wheats of the Gatersleben gene bank // Kulturpflanze. 1987. V. 35. P. 179-186.
- 6. Konzak C.F. Mutations and mutation breeding // Wheat and Wheat Improvement. 1987. P. 428-444.
- 7. Ригин Б. В., Орлова И. Н. Пшенично-ржаные амфидиплоиды. Л.: Колос. 1977. 280 с.
- 8. Börner A., Plaschke J., Dwarfing genes of wheat and rye and its ex-pression in triticale // Triticale: Today and Tomorrow. Developments in Plant Breeding / Eds Guedes-Pinto H., Darvey N., Carnide V.P. Netherlands: Kluwer Acad., 1996. V. 5. P. 275-280.
- 9. Tarkowski Cz., Gruschecka D., Bichta I., Kowalczyk K. Transfer of genes Rht1, Rht2 and Rht3 from wheat to triticale // Triticale: Today and Tomor-row. Developments in Plant Breeding / Eds Guedes-Pinto H., Darvey N., Carnide V.P. Netherlands: Kluwer Acad., 1996. V. 5. P. 275-280.
- 10. Wolski T., Gryka J. Semidwarf winter triticale // Triticale: Today and Tomorrow. Developments in Plant Breeding / Eds Guedes-Pinto H., Darvey N., Carnide V.P. Netherlands: Kluwer Acad., 1996. V. 5. P. 275-280.
- 11. Kiss A. Experiments to produce day neutral triticale. Zoldsegtermesz-tesi Kutato Intezet Bullrtinje. 8. HUN. 1973.
- 12. Кобылянский В. Д. Рожь. Генетические основы селекций. М.: Колос. 1982. 221 с.
- 13. Сулима Ю. Г., Сечняк Л. К. Тритикале. М.: Колос, 1984. 317 с.
- 14. Шевченко В. Е, Гончаров С. В. Интрогрессия доминантной ко-роткостебельности ржи в геном тритикале // Вестн. с.-х. науки. 1990. №10. С. 29-33.
- 15. McIntosh R.A. Catalogue of gene symbols for wheat//Proc. of the 9th Inter. Wheat Gen. Symp. Canada, Saskatoon, Saskatchewan. 1998. V.5. 236 p.

Резюме

The use of test with hibberrelic acid allowed to determine the origin of some genes for semidwarfness. The recessive gene rht1 (sample SL3MR), gene with in-complete dominance Rht3 (Bokolo) (both from wheat) were identified. Semidomi-nant gene for semidwarfness HI, introgressed in triticale genotype from rye does not react to hibberrelic acid action.

Ключевые слова

triticale, plant height, hibberrelic acid