Медь - фото
Медь

Агрохимикаты

По-английски
Copper
Раздел на сайте

Содержание:


Медь известна человечеству очень давно. Когда-то из нее даже делали оружие, правда, из-за того, что этот металл очень мягкий, в военном деле он перестал применяться еще в третьем тысячелетии до нашей эры. Сложно сказать, сколько именно названий сменила медь за то огромное количество лет, на протяжении которых ее использует человек, однако последнее имя – Сuprum– было дано ей в честь острова Кипр, где в III в. до н.э. велись интенсивные разработки медных рудников.

Несмотря на то, что на Кипре уже очень давно не ведется добыча этого металла, остров до сих пор известен в качестве месторождения меди. Дело в том, что такие рудники – явление достаточно редкое. Хотя в природе и встречаются медные самородки (самый крупный из добытых весил 420 тонн), основную часть металла добывают из руд и минералов. Кстати, раньше ее получали преимущественно из малахита – того самого, который ныне используется в изготовлении украшений и других декоративных вещиц. Он представляет собой основной карбонат меди, который образуется в карбонатных породах, а также может формироваться на воздухе в присутствии воды и углекислого газа. Пример последнего мы можем наблюдать воочию: оказывается, зеленые крыши домов старой Праги покрыты не яркой краской, а медными листами, на поверхности которых под действием времени образовалась тонкая пленка малахита…

Каждый год по всему миру выплавляется порядка 10 миллионов тонн меди, которая самостоятельно или в составе сплавов используется с самыми разными целями, от изготовления мельхиоровых ложек до производства антисептиков. Медь нужна практически в любой сфере производства, а также в здравоохранении и сельском хозяйстве.

Физические и химические свойства

Медь (Cuprum) Cu – химический элемент I группы побочной подгруппы периодической системы Менделеева. Атомный номер – 29. Атомная масса – 63,54. Природная медь состоит из смеси двух стабильных изотопов с массовым числом 63 (69,1 %) и 65 (30,9 %)

Медь – металл красного, в изломе розового цвета. При просвечивании в тонких слоях заметен зеленовато-голубой оттенок. Температура плавления – 1083°C, температура кипения – 2600°C.

В химическом отношении медь является промежуточным элементом между элементами первой плеяды VIII и щелочными металлами I группы химической системы Менделеева. Так же, как железо, кобальт и никель, она склонна к комплексообразованию, образует окрашенные соединения, нерастворимые сульфиды и др. Сходство по химическим свойствам с элементами главной подгруппы первой группы незначительно.

В химических соединениях медь обычно присутствует в двухвалентном состоянии, но известны вещества, в которых медь трехвалентна.

Содержание меди в почве и стран СНГ. Общее количество и подвижные формы (для некоторых типов), (мг/кг), согласно данным:
ПочвыОбщее среднее содержание меди

(подвижные формы)

Пределы колебаний общего среднего содержания меди
Почвы тундры92 - 23
Дерново– подзолистые15

(1 - 5,4)

0,1 – 47,9
Серые лесные15

(6,6 - 7,8)

5 – 39
Черноземы30

(4,1 - 6,5)

7 – 18
Каштановые100,6 – 20
Сероземы115 - 20
Засоленные274 - 42
Красноземы и желтоземы76

(7,4)

27 - 140
Болотные112 - 37
Торфяник верховой31 - 5
Дерново-карбонатные Прибалтики51,2 – 18,5

Содержание в природе

В земной коре содержится 0,01 % меди. Распространение в природе сравнительно низкое. Встречается в свободном состоянии в виде самородков, иногда очень значительных размеров. Но руды самородной меди распространены сравнительно мало – их не более 5 % от общей добычи в мире.

Медь – один из элементов, образующих халькосферу, которая располагается между литосферой и земным ядром. В связи с выдавливанием халькофилов в литосферу вследствие магматических и гидротермальных процессов подавляющая часть меди (около 80 %) присутствует в земной коре в соединениях с серой, 15 % меди – в виде кислородных соединений: окислов, карбонатов, силикатов и прочих. Данные соединения являются продуктами выветривания первичных сульфидных медных руд.

Медь образует до 240 различных минералов, но только около 40 из них имеют промышленное значение.

Важнейшие для промышленности минералы – халькопирит (медный колчедан), халькозин (медный блеск), ковеллин, борнит, малахит, азурит, хризаколла, брошантит. Обычны арсениды, антимониды и сульфоарсениды меди.

Повышенное содержание меди свойственно средним и основным горным породам, а пониженное – карбонатным. Наибольшее распространение имеют простые и сложные сульфиды (первичные минералы). Они довольно легко растворяются при выветривании и высвобождают ионы меди. Кроме того, катионы меди обладают разнообразными свойствами и склонны к химическому взаимодействию с органическими и минеральными веществами. Они легко осаждаются различными анионами: сульфидом, карбонатом, гидроксидом. По этой причине медь в почвах относительно малоподвижна, и ее суммарное содержание в почвенных профилях варьирует незначительно.

Начальным состоянием распределения меди в почвах управляют два фактора: процессы почвообразования и материнская порода. Обычной чертой распределения меди в почвенном профиле является ее аккумуляция в верхних слоях. Это отражает ее биоаккумуляцию и влияние антропогенных факторов.

В почве различают

следующие формы меди: обменные (поглощенные органическими и минеральными коллоидами), водорастворимые, труднорастворимые медные соли, медьсодержащие минералы, комплексные органические соединения. Подвижность меди и доступность растениям зависит от комплексообразования и адсорбции. Ионы меди способны адсорбировать практически все минералы почвы. Адсорбция зависит от заряда поверхности адсорбента, контролируемого величиной кислотности среды. Растворимость катионных и анионных форм меди понижается при pH 7–8.

Ключевая реакция содержания меди в почве – комплексообразование с органическими соединениями. Гуминовые вещества образуют с медью растворимые и нерастворимые соединения.

Наиболее доступны для растений обменносорбированные и водорастворимые соединения меди.

Содержание меди в различных типах почв

Содержание меди в почвах стран СНГ колеблется в достаточно широких пределах – от 1 до 100 мг/кг и выше.

Потребность с/х культур в меди и симптомы недостатка, согласно данным:
КультураПСимптомы недостатка
Общие симптомы Потеря тургора листьев, хлороз;

Тормозится рост, нарушается образование репродуктивных и запасающих органов, происходит закручивание листьев

Зерновые
Общие симптомы Рост заторможен, растения светло-зеленые, верхние листья сухие, скрученные;

Колосья и метелки недоразвиты;

Цветки стерильные, кончики листьев белеют

Озимая пшеницаВ
Озимая рожь-
Яровая пшеницаВ
Яровая рожьС
ЯчменьВ
ОвесВ
Зернобобовые
ГорохН
БобыС
Масличные
Озимый рапс-
Яровой рапс-
ЛенВУкороченные междоузлия, розеточность листьев, склонность к полеганию
подсолнечникВСоцветие мелкое, искривленное, листья верхнего яруса бледные
Овощные
Капуста цветнаяС
ОгурецССтановится карликовым, ткани теряют тургор, растения вянут;

Белеют кончики молодых листьев;

Опадают завязи и цветки;

Задерживается стеблевание;

Слабо образуются семена

МорковьВВерхние 3-5 листьев становятся мелкими, сине-зеленого цвета;

Хлороз отсутствует;

Цветки недоразвиты;

Завязи осыпаются;

Побеги слабые;

Развитие корней слабое

РедисС
РедькаС
ТоматС
Капуста белокочаннаяС
ЛукВУгнетается рост и развитие;

Плотность чешуй понижается;

Цвет бледно-желтый

СалатВЛистья уродливой формы, беловатой окраски, слабо растут
Пропашные
Картофель-
Свекла сахарная, кормовая, столоваяС
Кормовые
Клевер луговойС
ЛюцернаВ
Кукуруза на силос и зеленую массуС
Плодовые
Общие симптомы На верхних листьях побегов – хлороз тканей между жилками.

Лист беловатый. С усилением - побеги растут сплющенными, темно-зелеными с маленькими листьями, листья опадают

Образуется суховершинность, цветение и завязывание плодов прекращается, плоды мельчают, качество их ухудшается

СливаВМолодые листья желтеют, ранний листопад, кора растрескивается, натеки камеди, слабое плодоношение
ЯблоняВКончики побегов увядают, ведьмины метлы, опадают верхние листья
Цитрусовые
Общие симптомыВПлодоношение отсутствует

Очень высоко содержание меди в почвах, образовавшихся на богатых медью породах и в районах концентрации медных месторождений. Значительное обогащение почв медью отмечается при частой обработке растений инсектофунгицидами с содержанием меди.

Содержание данного элемента в почве непосредственно связано с его содержанием в почвообразующих породах:

Базальты

– содержат больше всего меди.

Андезиты

– несколько меньше, чем базальты.

Граниты

– низкое содержание меди.

Валунные суглинки, известняки и пески

– особенно бедны медью

Глины и лессы

– самые богатые медью среди осадочных пород.

Общее содержание меди различается в зависимости от типа почв:

Желтоземы и красноземы

– наиболее богатые медью.

Засоленные почвы и черноземы

так же богаты медью, но здесь ее меньше, чем в красноземах.

Дерново-подзолистые, серые лесные, сероземы и каштановые

почвы – содержат более низкие концентрации данного металла.

Верховые торфяники и дерново-карбонатные

типы почв прибалтийских районов – самые бедные по общему содержанию меди.

Почвы тундры

– так же бедны медью, как и предыдущие типы почв.

Торфянисто-болотные

и некоторые минеральные почвы песчаного и супесчаного механического состава содержат количество меди, не способное обеспечить нормальный уровень питания растений данным элементом. При этом надо отметить, что торфянисто-болотные почвы значительно различаются по содержанию меди.

Подвижная медь

. Для сельского хозяйства важно не только общее содержание меди в почве, но и форма нахождения и степень доступности растениям. Формы меди подразделяются на четыре группы:

  • медь в кристаллической решетке первичных и вторичных минералов;
  • медь в соединениях с органическим веществом почвы;
  • медь в поглощенном состоянии на поверхности коллоидных частиц почвы;
  • водорастворимые формы меди.

Содержание водорастворимых соединений обычно мало и составляет менее 1 % от общего ее количества. При этом, они представлены как минеральными, так и органическими кислотами. Водорастворимые соединения меди подвержены вымыванию из почв. Это значимо для супесчаных и песчаных почв с малой емкостью поглощения.

Кроме водорастворимых соединений, легко усваиваемыми формами соединений меди являются обменно-сорбированные. Медь поглощается органическими и минеральными коллоидами и глинистыми минералами почв.

Содержание доступной для растений меди в почвах колеблется от 1,1 до 7,8 мг/г.

Роль в растении

Биохимические функции

Формы нахождения и поведения меди в растениях делятся на шесть групп:

  1. Медь присутствует в комплексных соединениях с протеинами и низкомолекулярными органическими веществами.
  2. Медь обнаруживается в составе энзимов – жизненно важных для растений веществ с неисследованными функциями.
  3. Медь играет немаловажную роль в процессах дыхания, фотосинтеза, перераспределения углеводов, фиксации и восстановления азота, метаболизма клеточных стенок и протеинов.
  4. Медь влияет на проницаемость сосудов ксилемы для воды и контролирует баланс влаги.
  5. Медь контролирует образование ДНР и РНК.
  6. Медь оказывает значительное влияние на механизмы устойчивости к различным заболеваниям. Однако при избытке или повышенном содержании меди в растениях они становятся менее устойчивы к некоторым заболеваниям.

По биохимическим свойствам и функциям медь схожа с железом и способна как образовывать стабильные комплексы, так и изменять валентность с двухвалентной на одновалентную. Одновалентная медь нестабильна, в отличие от двухвалентной. Вопрос о том, в какой форме – Cu (II) или Cu (III) – медь поглощается растениями, в настоящее время остается открытым. До 99 % меди в растениях присутствует в виде комплексных форм, а концентрация свободных одно- и двухвалентных ионов предельно низка. Для меди характерно большее сродство к аминокислотам, чем к органическим кислотам, и средняя мобильность во флоэме.

Большинство функций меди в растениях связано с ее непосредственным участием в ферментативных окислительно-восстановительных реакциях. Существует несколько важнейших Cu-ферментов:

  1. Пластоцианин. Участвует в процессе фотосинтеза. Свыше 50 % меди в хлоропластах связано с пластоцианином. На 1000 молекул хлорофилла приходится три-четыре молекулы этого вещества.
  2. Цитохлоромоксидаза – оксидаза митохондриальной ЭТЦ. Включает в себя два атома меди и два атома железа в гемовой конфигурации. Атомы меди взаимодействуют с молекулой кислорода, при условии недостатка меди активность фермента снижается.
  3. Полифенолоксидаза. Отвечает за перенос фенолов на молекулярный кислород. Фермент участвует в биосинтезе лигнина, алкалоидов, меланина. Эти вещества ингибируют прорастание спор и рост грибов. При недостатке меди снижается активность фермента.
  4. Супероксиддисмутаза – изофермент. Играет важную роль в детоксикации супероксидного радикала, образуемого в процессе фотосинтеза. Изофермент присутствует в цитозоле, митохондриях, глиоксисомах, хлоропластах.
  5. Аскорбатоксидаза. Катализирует окисление аскорбиновой кислоты до дегидроаскорбиновой. Содержит до пяти атомов меди на молекулу. Локализуется в клеточных стенках и цитоплазме. При недостатке меди активность фермента снижается. Используется как показатель оценки обеспеченности растений медью.
  6. Диаминоксидаза. Катализирует деградацию путресцина. Локализован в апопласте эпидермиса и ксилемы зрелых тканей. В условиях дефицита меди активность фермента снижается.

Недостаток (дефицит) меди в растениях

Болезнь, вызываемая недостатком меди, называется белокосицей, белой чумой или болезнью обработки. Дефицит меди провоцирует задержку роста, хлороз, потерю тургора и, как следствие, увядание растений, а также задержку цветения и гибель урожая. У злаков при острой нехватке меди белеют кончики листьев и не развивается колос. Плодовые страдают суховершинностью.

Дефицит меди, как правило, возникает у растений на кислых песчаных и торфянистых почвах. Критический уровень недостатка меди наблюдается при содержании меди в вегетативных частях растений 1–5 мг/кг сухой массы. Типичные анатомические нарушения, возникающие вследствие дефицита меди, непосредственно связаны с нарушением лигнификации клеточных стенок. В наибольшей степени это проявляется в склеренхиме клеток стеблей. Это явление может наблюдаться даже при незначительном снижении уровня меди и может быть использовано с целью диагностики.

При недостатке меди отмечается снижение активности медьсодержащих ферментов, участвующих в процессах дыхания и фотосинтеза. Как следствие, в растениях снижается уровень растворимых углеродов. При низком их содержании нарушается формирование пыльцы, что приводит к снижению фертильности, а у бобовых подавляется азотофиксация. Недостаток меди больше влияет на развитие семян, зерен, чем на рост вегетативной массы. Таким образом, для нормального образования и функционирования генеративных органов растениям требуется гораздо больше меди, чем для формирования вегетативных частей растения.

Вызванные недостатком меди нарушения процессов фотосинтеза и дыхания отражаются на энергетическом обмене растения, что провоцирует каскад вторичных физиологических эффектов.

Растения испытывают недостаток меди, а почвы считаются бедными по содержанию данного элемента при содержании меди в почвах Нечерноземья менее 1,5–2,0 мг/кг почвы, а в Черноземье – менее 2,0–5,0 мг.

Избыток меди

При избытке меди наблюдается проявление симптомов отравления растений (фитотоксичность). Это хлороз молодых листьев, при этом, жилки остаются зелеными; хлороз нижних листьев. Последний сопровождается появлением коричневой пятнистости и опадением листьев.

Содержание меди в различных соединениях

Источниками промышленного получения медьсодержащих удобрений являются различные медные руды. По минералогическому составу они делятся на три категории: самородные, окисленные и сульфидные. Основной сопутствующий минерал сплошных сульфидных руд – пирит. Содержание меди в рудах колеблется от 0,7 до 3 %. Медные руды – комплексное сырье. В зависимости от основного спутника меди, подразделяются на медноцинковые, медноникелевые, медномолибденовые и меднокобальтовые. Кроме того, медные руды содержат серу, селен, золото, серебро, платину и многие другие элементы.

Значительное количество меди и ее соединений может быть получено при переработке вторичных цветных металлов.

Содержание меди в удобрениях, согласно данным:
УдобрениеСодержание, %
Сернокислая медь (медный купорос)25 - 35
Суперфосфат с медью0,4 - 0,8
Пиритные огарки0,3 - 0,7
Шлаки цинкоэлектролитных и медеплавильных заводов0,2 – 0,5
Низкопроцентные, окисленные медные руды0,9
Порошок, содержащий медь5 - 6

Способы применения медьсодержащих удобрений

Сернокислая медь (медный купорос)

применяется для некорневых подкормок и обработки семян.

Суперфосфат с медью

используют для внесения в почву, для предпосевной обработки семян и некорневой подкормки растений.

Пиритные огарки

применяют для внесения в почву.

Шлаки цинкоэлектролитных и медеплавильных заводов

используют для внесения в почву.

Низкопроцентные, окисленные медные руды

применяют для внесения в почву.

Порошок, содержащий медь

, применяется для опудривания семян.

Эффект от применения медьсодержащих удобрений

Эффективность применения медьсодержащих удобрений зависит от вида растения и типа почвы.

Зерновые, лен, кормовые культуры

на осушенных болотных и других почвах. Медные удобрения высокоэффективны, способствуют повышению урожайности и улучшению качества продукции. Опытным путем установлено, что внесение медных удобрений повышает урожай пшеницы на 2–5 ц/га, ячменя – на 2–3 ц/га, овса – на 4–6 ц/га, зеленой массы кукурузы – на 21 %, а початков – на 9–13 %.

Корнеплоды сахарной свеклы

на дерново-подзолистой почве. Внесение медных удобрений приводит к повышению урожайности на 43–45 %. Та же культура при внесении Сu на дерново-карбонатных почвах с достаточным содержанием подвижной меди прибавки в урожае не дает.

Многолетние травы (Латвия)

. После внесения медных удобрений повышается урожайность зеленой массы, улучшается кормовое качество трав.

Картофель

на дерново-подзолистых почвах.Внесение меди при определенных условиях способствует не только увеличению урожайности и улучшению качества корнеплодов, но и повышает сопротивляемость растения к фитофторозу и черной ножке.

Удобрения, содержащие Медь


Показать все удобрения »

Томаты

. Медьсодержащие удобрения увеличивают урожайность и содержание витамина С в плодах.

Морковь

. Увеличивается урожайность, содержание каротина, сахаров, азота.

(c) Справочник AgroXXI